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VGP351 – Week 6

⇨ Agenda:
­ Fins-and-shells fur
­ Nonphotorealistic Rendering

­ Cel shading
­ Gooch technical illustration
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Volumetric Fur

⇨ Close-up, fur appears as a volumetric effect
⇨ Kajika and Kay presented an algorithm at 

SIGGRAPH '89 implementing fur via 3D textures
­ Volumetric textures are very memory intensive
­ Kajika and Kay's model involves several 

computationally expensive steps

⇨ Not practical for real-time
­ There has to be a different way!



© Copyright Ian D. Romanick 2009

13-May-2009

Shells and Fins

⇨ Instead of a 3D texture, fur can be implemented 
with a “stack” of 2D textures

­ Each layer in the stack represents the fur at a 
different depth

­ Draw each layer in a progressively larger “shell” 
around the original object geometry
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Shells and Fins

⇨ Drawing loop:
­ Draw base object with inner-most (call it level 0) fur 

texture
­ Disable alpha blending
­ Enable z-testing
­ Enable z-writing

­ Draw base geometry moved out some small step 
along the normals

­ Enable alpha blending
­ Enable z-testing
­ Disable z-writing
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Shells and Fins

⇨ But this looks bad along the silhouette 
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Shells and Fins

⇨ Add fin geometry to each polygon
­ Create fin textures to look like side-on view of fur
­ Draw fin after drawing all shells

­ Enable alpha blending
­ Enable z-testing
­ Disable z-writing
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Shells and Fins

⇨ Generate fin geometry in the vertex shader:
­ Draw each vertex twice

­ Once with w = 0
­ Once with w = 1

­ Use the w value to determine whether or not to 
extrude the vertex in the normal direction

­ Draw the vertices as two triangles:
­ One with vertices 0, 1, 1
­ The other with vertices 1, 0, 0
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Shells and Fins

⇨ But this looks bad in non-silhouette areas
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Shells and Fins

⇨ Gradually blend in fins as they approach the 
silhouette

⇨ We don't really have a fin normal...what to do?

fin=max 0,2∣cos V ,N fin∣−1
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Shells and Fins

⇨ Gradually blend in fins as they approach the 
silhouette

⇨ We don't really have a fin normal...what to do?
­ The surface's normal is the fin's tangent

fin=max 0,2∣cos V ,N fin∣−1

fin=max 0,2∣sin V ,N surface∣−1
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Shells and Fins

⇨ Alpha blended fins
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Lighting Shells and Fins

⇨ Use the surface normal as the direction of the 
hair

­ P
d
 and P

s
 are diffuse and specular exponents

­ Similar to Goldman's fakefur lighting model

⇨ A little trig-identity love gets us:

K=K d sin N surface , L
PdK s sin N surface , H 

Ps

K = K d 1−cosN surface , L
Pd /2K s1−cos N surface , H 

Ps/2

K = K d 1−N surface⋅L
Pd /2K s1−N surface⋅H 

Ps/2
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Lighting Shells and Fins

⇨ No shadowing happens!
­ Fur near the skin is occluded by the fur above it
­ Add a shadowing term to falloff to a minimum value 

linearly with the distance from the outermost shell

­ D is the current shell distance
­ D = 0 is the shell closest to the skin

­ D
max

 is the total number of shells

­ S
min

 is the minimum amount of light reaching the bottom layer

S=
D 1−Smin

Dmax
Smin
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Non-photorealistic Rendering (NPR)

⇨ From Wikipedia:
Non-photorealistic rendering (NPR) is an area of computer 
graphics that focuses on enabling a wide variety of 
expressive styles for digital art.
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Non-photorealistic Rendering (NPR)

⇨ From Wikipedia:
Non-photorealistic rendering (NPR) is an area of computer 
graphics that focuses on enabling a wide variety of 
expressive styles for digital art.

⇨ In other words, NPR attempts to exaggerate or 
use alternate representations of imagery to 
convey or highlight a particular mood or 
message

­ Cel shading (a.k.a. “toon” rendering)
­ Painterly rendering
­ Technical illustrations
­ etc.
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Cel Shading

⇨ Several common cartoon image styles:
­ Character regions filled with solid, single-tone colors
­ Regions filled with two tones: light and dark
­ Regions filled with three tones: light, dark, and 

highlight
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Cel Shading

⇨ Several common cartoon image styles:
­ Character regions filled with solid, single-tone colors
­ Regions filled with two tones: light and dark
­ Regions filled with three tones: light, dark, and 

highlight
­ Each is easy to produce on a computer
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Cel Shading

⇨ Single tone coloring
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Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting
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Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting

⇨ Two-tone coloring
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Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting

⇨ Two-tone coloring
­ Driven by surface lighting
­ If lighting is above some threshold, use the lighter 

color
­ Otherwise use the darker color
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Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting

⇨ Two-tone coloring
­ Driven by surface lighting
­ If lighting is above some threshold, use the lighter 

color
­ Otherwise use the darker color
­ Calculate N⋅L per vertex and interpolate across 

surface, check value per fragment
­ Classically done using texture look-ups, but is faster using 

conditional assignments on shader hardware
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Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”
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Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
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Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons
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Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons
­ Crease edges – edges where the angle between the 

two surfaces is too sharp
­ This angle is called the dihedral angle
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Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons
­ Crease edges – edges where the angle between the 

two surfaces is too sharp
­ This angle is called the dihedral angle

­ Material edge – boundary between two different 
colors or materials
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Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons
­ Crease edges – edges where the angle between the 

two surfaces is too sharp
­ This angle is called the dihedral angle

­ Material edge – boundary between two different 
colors or materials

­ Silhouette edges – edges where one border polygon 
faces towards the viewer and the other faces away
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Cel Boundary Inking

⇨ Most boundary types are calculated during 
authoring or as a pre-processing step

­ Border edges – edges are added by the artist, by the 
authoring tool, or are detected in a pre-processing 
step

­ Crease edges – dihedral angle is calculated during 
pre-processing.  If N

surface1
⋅N

surface2
 < cos(60˚), the edge 

is a crease
­ Material edge – handled the same as border edges
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Silhouette Edge Rendering

⇨ Silhouette edges are view-dependent and must 
be calculated at run-time

­ Conceptually similar to drawing fins in shells-and-fins 
fur rendering

⇨ Several broad classes of implementations:
­ Surface angle
­ Added geometry
­ Image processing
­ Explicit edge detection
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Silhouette Edge Rendering

⇨ Surface angle test is similar to two-tone cel 
shading

­ Examine angle between V and N
­ If angle is near 90˚, use silhouette color

⇨ Pros / cons:
­ Really easy to implement
­ Doesn't work on all models

­ Generally fails on models with large flat surfaces
­ Only worked on about 25% of the models in the game Cel 

Damage1

1 Real-Time Rendering, p. 295
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Silhouette Edge Rendering

⇨ Back-face biasing:
­ Render back-facing geometry by moving it towards 

the camera by some small delta

­ Amount to bias back-face depends on both slope of 
back-face and slope of front-face

View

Visible silhouette
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Silhouette Edge Rendering

⇨ Edge expansion:
­ Move each face out by some distance along the 

plane's normal
­ Not the vertex normal!
­ Adjust the distance according to the desired silhouette 

thickness

­ Create new geometry to fill in the gaps
­ Render back-facing geometry

Moved faces

Added faces
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Silhouette Edge Rendering

⇨ Shell expansion:
­ Similar to edge expansion
­ Render shell as object geometry expanded along 

vertex normals
­ Normals must be identical for vertices shared by two 

polygons
­ Otherwise degenerate edge polygons must be added
­ Render only back-faces of shell
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Silhouette Edge Rendering

⇨ Image processing:
­ Render surface normal and depth a texture

­ Store normal in RGB and most significant portion of depth in 
alpha

­ Process texture with separable edge detection filter
­ Card and Mitchell recommend using the Sobel edge 

detection filter
­ Store each pass in a texture
­ Composite both textures together over scene



© Copyright Ian D. Romanick 2009

13-May-2009

Silhouette Edge Rendering

⇨ Explicit edge detection:
­ Draw each edge of the object as a line
­ At each vertex, store the normals of the two adjoining 

polygons
­ If one normal points towards the viewer and the other 

away, draw the line as a silhouette
­ If the two normals point significantly away from each 

other, draw the line as a crease
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Gooch-style Technical Illustration

⇨ Many similar ideas to cel shading
­ Use alternate shading
­ Highlight creases
­ Highlight silhouettes
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Gooch-style Technical Illustration

⇨ Shade objects from warm to cool instead of light 
to dark

­ Still conveys information about the curvature of the 
object

­ Maintains visibility of details in areas that would be 
dark or difficult to light
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Gooch-style Technical Illustration

⇨ Shade objects from warm to cool instead of light 
to dark

­ Still conveys information about the curvature of the 
object

­ Maintains visibility of details in areas that would be 
dark or difficult to light

⇨ Shade in similar manner to cel shading
­ Calculate N⋅L per vertex
­ Use interpolated value per fragment to look up in a 1D 

blue-green to yellow-orange gradient texture
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Gooch-style Technical Illustration

⇨ Draw crease edges in white
­ This helps provide information about the model's 

orientation
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Gooch-style Technical Illustration

⇨ Draw crease edges in white
­ This helps provide information about the model's 

orientation

⇨ Draw silhouette edges in black
­ If an edge is both a crease and a silhouette, it should 

be drawn as a silhouette
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Gooch-style Technical Illustration

⇨ Draw crease edges in white
­ This helps provide information about the model's 

orientation

⇨ Draw silhouette edges in black
­ If an edge is both a crease and a silhouette, it should 

be drawn as a silhouette

⇨ Silhouette and crease edges are handled 
differently, so the image processing method of 
inking probably can't be used

­ Using the explicit edge detection method allows 
silhouettes and creases to be drawn in a single pass
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Next week...

⇨ Post-processing effects
­ General image filters
­ Separable filters
­ Depth-of-field
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Legal Statement

This work represents the view of the authors and does not necessarily 
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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