
© Copyright Ian D. Romanick 2009

13-May-2009

VGP351 – Week 6

⇨ Agenda:
­ Fins-and-shells fur
­ Nonphotorealistic Rendering

­ Cel shading
­ Gooch technical illustration



© Copyright Ian D. Romanick 2009

13-May-2009

Volumetric Fur

⇨ Close-up, fur appears as a volumetric effect
⇨ Kajika and Kay presented an algorithm at 

SIGGRAPH '89 implementing fur via 3D textures
­ Volumetric textures are very memory intensive
­ Kajika and Kay's model involves several 

computationally expensive steps

⇨ Not practical for real-time
­ There has to be a different way!



© Copyright Ian D. Romanick 2009

13-May-2009

Shells and Fins

⇨ Instead of a 3D texture, fur can be implemented 
with a “stack” of 2D textures

­ Each layer in the stack represents the fur at a 
different depth

­ Draw each layer in a progressively larger “shell” 
around the original object geometry



© Copyright Ian D. Romanick 2009

13-May-2009

Shells and Fins

⇨ Drawing loop:
­ Draw base object with inner-most (call it level 0) fur 

texture
­ Disable alpha blending
­ Enable z-testing
­ Enable z-writing

­ Draw base geometry moved out some small step 
along the normals

­ Enable alpha blending
­ Enable z-testing
­ Disable z-writing



© Copyright Ian D. Romanick 2009

13-May-2009

Shells and Fins

⇨ But this looks bad along the silhouette 



© Copyright Ian D. Romanick 2009

13-May-2009

Shells and Fins

⇨ Add fin geometry to each polygon
­ Create fin textures to look like side-on view of fur
­ Draw fin after drawing all shells

­ Enable alpha blending
­ Enable z-testing
­ Disable z-writing



© Copyright Ian D. Romanick 2009

13-May-2009

Shells and Fins

⇨ Generate fin geometry in the vertex shader:
­ Draw each vertex twice

­ Once with w = 0
­ Once with w = 1

­ Use the w value to determine whether or not to 
extrude the vertex in the normal direction

­ Draw the vertices as two triangles:
­ One with vertices 0, 1, 1
­ The other with vertices 1, 0, 0



© Copyright Ian D. Romanick 2009

13-May-2009

Shells and Fins

⇨ But this looks bad in non-silhouette areas



© Copyright Ian D. Romanick 2009

13-May-2009

Shells and Fins

⇨ Gradually blend in fins as they approach the 
silhouette

⇨ We don't really have a fin normal...what to do?

fin=max 0,2∣cos V ,N fin∣−1



© Copyright Ian D. Romanick 2009

13-May-2009

Shells and Fins

⇨ Gradually blend in fins as they approach the 
silhouette

⇨ We don't really have a fin normal...what to do?
­ The surface's normal is the fin's tangent

fin=max 0,2∣cos V ,N fin∣−1

fin=max 0,2∣sin V ,N surface∣−1



© Copyright Ian D. Romanick 2009

13-May-2009

Shells and Fins

⇨ Alpha blended fins



© Copyright Ian D. Romanick 2009

13-May-2009

Lighting Shells and Fins

⇨ Use the surface normal as the direction of the 
hair

­ P
d
 and P

s
 are diffuse and specular exponents

­ Similar to Goldman's fakefur lighting model

⇨ A little trig-identity love gets us:

K=K d sin N surface , L
PdK s sin N surface , H 

Ps

K = K d 1−cosN surface , L
Pd /2K s1−cos N surface , H 

Ps/2

K = K d 1−N surface⋅L
Pd /2K s1−N surface⋅H 

Ps/2



© Copyright Ian D. Romanick 2009

13-May-2009

Lighting Shells and Fins

⇨ No shadowing happens!
­ Fur near the skin is occluded by the fur above it
­ Add a shadowing term to falloff to a minimum value 

linearly with the distance from the outermost shell

­ D is the current shell distance
­ D = 0 is the shell closest to the skin

­ D
max

 is the total number of shells

­ S
min

 is the minimum amount of light reaching the bottom layer

S=
D 1−Smin

Dmax
Smin



© Copyright Ian D. Romanick 2009

13-May-2009

References

Sheppard, G.  Real-Time Rendering of Fur. Honors Thesis, Univ. of Sheffield.  
2004. 
http://www.gamasutra.com/education/theses/20051028/sheppard_01.shtml

Thorough overview of the various real-time fur methods.

Tariq, S.  Fur (using Shells and Fins).  Nvidia White Paper, Number WP-03021-
001_v01.  February 2007.
http://developer.download.nvidia.com/whitepapers/2007/SDK10/FurShellsAndFins.pdf

This article focuses on optimizing shells-and-fins using Shader Model 4 
features that are currently only supported in OpenGL 3.x.

Kajiya, J. T. and Kay, T. L. 1989. Rendering fur with three dimensional textures. 
SIGGRAPH Comput. Graph. 23, 3 (Jul. 1989), 271-280.
http://www.icg.tu-graz.ac.at/courses/lv710.087/kajiyahair.pdf

Lake, A. and Kuah, K.. Real-Time Fur Rendering For Short Haired Creatures.  
2006. http://softwarecommunity.intel.com/articles/eng/2597.htm

Morris, N.  CS6610 Final Project.  December 2005.
http://www.cs.utah.edu/classes/cs5610/projects-2005/morris/

http://www.gamasutra.com/education/theses/20051028/sheppard_01.shtml
http://developer.download.nvidia.com/whitepapers/2007/SDK10/FurShellsAndFins.pdf
http://www.icg.tu-graz.ac.at/courses/lv710.087/kajiyahair.pdf
http://softwarecommunity.intel.com/articles/eng/2597.htm
http://www.cs.utah.edu/classes/cs5610/projects-2005/morris/


© Copyright Ian D. Romanick 2009

13-May-2009

Non-photorealistic Rendering (NPR)

⇨ From Wikipedia:
Non-photorealistic rendering (NPR) is an area of computer 
graphics that focuses on enabling a wide variety of 
expressive styles for digital art.



© Copyright Ian D. Romanick 2009

13-May-2009

Non-photorealistic Rendering (NPR)

⇨ From Wikipedia:
Non-photorealistic rendering (NPR) is an area of computer 
graphics that focuses on enabling a wide variety of 
expressive styles for digital art.

⇨ In other words, NPR attempts to exaggerate or 
use alternate representations of imagery to 
convey or highlight a particular mood or 
message

­ Cel shading (a.k.a. “toon” rendering)
­ Painterly rendering
­ Technical illustrations
­ etc.



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Shading

⇨ Several common cartoon image styles:
­ Character regions filled with solid, single-tone colors
­ Regions filled with two tones: light and dark
­ Regions filled with three tones: light, dark, and 

highlight



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Shading

⇨ Several common cartoon image styles:
­ Character regions filled with solid, single-tone colors
­ Regions filled with two tones: light and dark
­ Regions filled with three tones: light, dark, and 

highlight
­ Each is easy to produce on a computer



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Shading

⇨ Single tone coloring



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting

⇨ Two-tone coloring



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting

⇨ Two-tone coloring
­ Driven by surface lighting
­ If lighting is above some threshold, use the lighter 

color
­ Otherwise use the darker color



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Shading

⇨ Single tone coloring
­ Solid coloring (flat shading) without lighting

⇨ Two-tone coloring
­ Driven by surface lighting
­ If lighting is above some threshold, use the lighter 

color
­ Otherwise use the darker color
­ Calculate N⋅L per vertex and interpolate across 

surface, check value per fragment
­ Classically done using texture look-ups, but is faster using 

conditional assignments on shader hardware



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons
­ Crease edges – edges where the angle between the 

two surfaces is too sharp
­ This angle is called the dihedral angle



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons
­ Crease edges – edges where the angle between the 

two surfaces is too sharp
­ This angle is called the dihedral angle

­ Material edge – boundary between two different 
colors or materials



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Boundary Inking

⇨ Anyone who has seen a cartoon or a comic book 
knows that certain boundaries are “inked”

⇨ Four main types of edges need inking:
­ Border edges – edges not shared by two polygons
­ Crease edges – edges where the angle between the 

two surfaces is too sharp
­ This angle is called the dihedral angle

­ Material edge – boundary between two different 
colors or materials

­ Silhouette edges – edges where one border polygon 
faces towards the viewer and the other faces away



© Copyright Ian D. Romanick 2009

13-May-2009

Cel Boundary Inking

⇨ Most boundary types are calculated during 
authoring or as a pre-processing step

­ Border edges – edges are added by the artist, by the 
authoring tool, or are detected in a pre-processing 
step

­ Crease edges – dihedral angle is calculated during 
pre-processing.  If N

surface1
⋅N

surface2
 < cos(60˚), the edge 

is a crease
­ Material edge – handled the same as border edges



© Copyright Ian D. Romanick 2009

13-May-2009

Silhouette Edge Rendering

⇨ Silhouette edges are view-dependent and must 
be calculated at run-time

­ Conceptually similar to drawing fins in shells-and-fins 
fur rendering

⇨ Several broad classes of implementations:
­ Surface angle
­ Added geometry
­ Image processing
­ Explicit edge detection



© Copyright Ian D. Romanick 2009

13-May-2009

Silhouette Edge Rendering

⇨ Surface angle test is similar to two-tone cel 
shading

­ Examine angle between V and N
­ If angle is near 90˚, use silhouette color

⇨ Pros / cons:
­ Really easy to implement
­ Doesn't work on all models

­ Generally fails on models with large flat surfaces
­ Only worked on about 25% of the models in the game Cel 

Damage1

1 Real-Time Rendering, p. 295



© Copyright Ian D. Romanick 2009

13-May-2009

Silhouette Edge Rendering

⇨ Back-face biasing:
­ Render back-facing geometry by moving it towards 

the camera by some small delta

­ Amount to bias back-face depends on both slope of 
back-face and slope of front-face

View

Visible silhouette



© Copyright Ian D. Romanick 2009

13-May-2009

Silhouette Edge Rendering

⇨ Edge expansion:
­ Move each face out by some distance along the 

plane's normal
­ Not the vertex normal!
­ Adjust the distance according to the desired silhouette 

thickness

­ Create new geometry to fill in the gaps
­ Render back-facing geometry

Moved faces

Added faces



© Copyright Ian D. Romanick 2009

13-May-2009

Silhouette Edge Rendering

⇨ Shell expansion:
­ Similar to edge expansion
­ Render shell as object geometry expanded along 

vertex normals
­ Normals must be identical for vertices shared by two 

polygons
­ Otherwise degenerate edge polygons must be added
­ Render only back-faces of shell



© Copyright Ian D. Romanick 2009

13-May-2009

Silhouette Edge Rendering

⇨ Image processing:
­ Render surface normal and depth a texture

­ Store normal in RGB and most significant portion of depth in 
alpha

­ Process texture with separable edge detection filter
­ Card and Mitchell recommend using the Sobel edge 

detection filter
­ Store each pass in a texture
­ Composite both textures together over scene



© Copyright Ian D. Romanick 2009

13-May-2009

Silhouette Edge Rendering

⇨ Explicit edge detection:
­ Draw each edge of the object as a line
­ At each vertex, store the normals of the two adjoining 

polygons
­ If one normal points towards the viewer and the other 

away, draw the line as a silhouette
­ If the two normals point significantly away from each 

other, draw the line as a crease



© Copyright Ian D. Romanick 2009

13-May-2009

Gooch-style Technical Illustration

⇨ Many similar ideas to cel shading
­ Use alternate shading
­ Highlight creases
­ Highlight silhouettes



© Copyright Ian D. Romanick 2009

13-May-2009

Gooch-style Technical Illustration

⇨ Shade objects from warm to cool instead of light 
to dark

­ Still conveys information about the curvature of the 
object

­ Maintains visibility of details in areas that would be 
dark or difficult to light



© Copyright Ian D. Romanick 2009

13-May-2009

Gooch-style Technical Illustration

⇨ Shade objects from warm to cool instead of light 
to dark

­ Still conveys information about the curvature of the 
object

­ Maintains visibility of details in areas that would be 
dark or difficult to light

⇨ Shade in similar manner to cel shading
­ Calculate N⋅L per vertex
­ Use interpolated value per fragment to look up in a 1D 

blue-green to yellow-orange gradient texture



© Copyright Ian D. Romanick 2009

13-May-2009

Gooch-style Technical Illustration

⇨ Draw crease edges in white
­ This helps provide information about the model's 

orientation



© Copyright Ian D. Romanick 2009

13-May-2009

Gooch-style Technical Illustration

⇨ Draw crease edges in white
­ This helps provide information about the model's 

orientation

⇨ Draw silhouette edges in black
­ If an edge is both a crease and a silhouette, it should 

be drawn as a silhouette



© Copyright Ian D. Romanick 2009

13-May-2009

Gooch-style Technical Illustration

⇨ Draw crease edges in white
­ This helps provide information about the model's 

orientation

⇨ Draw silhouette edges in black
­ If an edge is both a crease and a silhouette, it should 

be drawn as a silhouette

⇨ Silhouette and crease edges are handled 
differently, so the image processing method of 
inking probably can't be used

­ Using the explicit edge detection method allows 
silhouettes and creases to be drawn in a single pass



© Copyright Ian D. Romanick 2009

13-May-2009

References

Gooch, B., Sloan, P. J., Gooch, A., Shirley, P., and Riesenfeld, R. 1999. 
Interactive technical illustration. In Proceedings of the 1999 Symposium on 
interactive 3D Graphics (Atlanta, Georgia, United States, April 26 - 29, 1999). 
I3D '99. ACM, New York, NY, 31-38. http://www.cs.utah.edu/~bgooch/ITI/

http://www.cs.utah.edu/~bgooch/ITI/


© Copyright Ian D. Romanick 2009

13-May-2009

Next week...

⇨ Post-processing effects
­ General image filters
­ Separable filters
­ Depth-of-field



© Copyright Ian D. Romanick 2009

13-May-2009

Legal Statement

This work represents the view of the authors and does not necessarily 
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

